Dirac software encoding algorithm documentation
0.2

Thomas Davies

September 19, 2007

1 Introduction

2 Encoder parameters

The Dirac encoder software is controlled by passing around an EncoderParams
object which contains the parameters used in quantisation, motion estimation
and CBR operation. The following is a list of the EncoderParams access meth-
ods, with some comments, so as to indicate the sort of control that the encoder
exercises.

bool Verbose() — returns a flag indicating whether to provide commentary
during encoding.

bool LocalDecode() — returns a flag indicating whether a locally decoded
version of the video is provided, to save running a decoder to view the pictures.
This should be byte-for-byte identical with what the decoder produces, and this
is a good initial diagnostic when implementing any bitstream changes.

bool Lossless() — returns a flag indicating whether lossless coding is being
used. If so all quantisers are set to 1.

bool FullSearch() — returns a flag indicating whether full search motion esti-
mation is being used for the pixel-accurate search. The search ranges can be set
at the command line. Sub-pixel refinement and mode decision are unaffected
by this.

int XRangeME(), int YRangeME() — the horizontal and vertical ranges used
for full search motion estimation (and ignored for standard hierarchical search).

float Qf() — the “quality” factor (QF) being used for encoding. This is either
set at the command line or determined by the rate control algorithm for CBR
operation. It is actually not a quality factor per se but an indicator of the trade-
off between quality and bit rate. However it has a fairly steady relationship with
quality in a reasonably homogenous sequence. This is the master encoder control
parameter from which all others (apart from perceptual weighting) are derived.

int NumL1() — the nominal number of L1 (i.e. P) pictures in the GOP. It’s
only nominal because I picture insertion may override it

int L1Sep() — the separation between I/L1 pictures: the number of L2 (i.e.
B) pictures between them

float UFactor(), float VFactor() — a factor can be defined to weight U com-
ponent quantisation noise when choosing quantisers. This allows chroma to be
more, or less quantised on average. This feature is not used currently.

float CPD() — the key factor in determining perceptual weighting is the
number of cycles per degree implied by the video standard and the assumed
viewing distance. This can be fed into a weighting function and used to adjust
subband quantisers according to the visibility of the spatial frequency of the
subband.

bool Denoise() — returns a flag indicating whether denoising is being used.

float TLambda() — the Lagrangian lambda parameter using for choosing
quantisers for scheduled Intra picture coefficients. This is derived directly from
the QF value.

float L1Lambda() — likewise, but for L1 pictures.

float L2Lambda() — likewise, but for L2 pictures.

float LIMELambda(), float L2ZMELambda() — returns the Lagrangian lambda
parameters used as part of Rate-Distortion Optimised block matching when mo-
tion estimating L1 and L2 pictures respectively.

int GOPLength() const — returns the size of the GOP, computed from the
the number of L1 pictures and their separation.

const EntropyCorrector& EntropyFactors() — returns a set of scaling factors
used in quantiser selection. In quantiser selection, an estimate is made of the
subband entropy i.e. the number of bits required to code a subband. This
is usually an overestimate, since only a simple entropy estimation process is
used. The EntropyCorrector class maintains a set of correction factors for each
subband, component and picture type based on previous data, so that a more
accurate estimate can be made.

WltFilter IntraTransformFilter() — returns the wavelet filter being used for
Intra pictures.

WltFilter InterTransformFilter() — returns the wavelet filter being used for
Inter pictures.

int TargetRate() — returns the target bit rate in kilobits per second, when
CBR coding is being used.

3 RDO principles

The encoder works fundamentally on Rate-Distortion Optimisation (RDO) prin-
ciples. In lossy compression one is trying to minimise rate with respect to dis-
tortion, or minimise distortion with respect to rate. The are both constrained
optimisation problems, which can be turned into an unconstrained problem by
the method of Lagrangian multipliers. In this approach, instead of trying to
minimise Error(p) with respect to Rate(p), or vice-versa over some parameter
p, one minimises

Error(p) + ARate(p) (1)

over p instead. One might think that this isn’t much simpler — if one has a
bit rate constraint, for example, why not code to meet that? The answer is
that in video coding bit rate constraints are global, and the bit stream consists
of many elements coded independently which have to hit the bit rate in total.
There are a very, very large number of ways of meeting the constraint and it’s
not clear which is best. By choosing a point of constant rate-distortion slope
for each element of the bitstream independently, one ensures (supposing that
the measures of distortion and bit rate are genuinely representative — see below)

that the distribution of bits between elements is optimal (see reference [1] for
an explanation of why this is so).

Having found a trade-off point, you can then converge on constant quality
or constant bit-rate by varying A, either by recoding the same material, or
(more riskily but pragmatically) assuming a degree of homogeneity and applying
changes to new data.

When choosing a quantiser, one can measure error as the difference between
a quantised and the original value. This can be weighted in different ways to give
a better indication of the perceptual impact of the distortion. Dirac uses a 4th
power metric, and also uses a spatial-frequency weighting metric. Quantisation
over subbands is fairly independent, especially in inter pictures.

Rate-Distortion optimisation in motion estimation is also necessary: at lower
bit rates, one wants a lower motion vector bit rate and for higher bit rates,
a higher motion vector bit rate. However, it doesn’t fit into the theoretical
RDO model because motion vector coding is not independent from coding the
residues, since the distortion that a particular motion field introduces (the mo-
tion compensated residual) can be corrected by the residue coding. So there
is an additional trade-off between bits spent on motion vectors and bits spent
on correcting the residue. In general, at high bit rate there are diminishing
returns from improving the motion field, and at low bit rate there are much
better returns from having a good motion field. Typically, in implementations,
some form of block matching is used with a modified matching criterion of the
form:

SADv) + MMMV Rate(v) (2)

for a vector v. MV Rate(v) can either be an instantaneous measure of the
contribution of v, or one may compute a whole set of candidates for a whole
picture and attempt some sort of smoothing, somehow, and measure motion
vector rate globally. Using an instantaneous measure (such as the size of v—vpyeq
for some predictor vprea) has drawbacks, but is certainly easier.

In Dirac, the overall trade-off factor or A is derived from a value termed
“QF”, meaning quality/quantisation factor. In discussion this tends to get
truncated to “quality factor”, which is very misleading: the one thing it is not
is a direct measure of quality, and coding with constant QF will ensure constant
quality only on homogenous material where the trade-off between distortion and
rate is constant. (I sometimes wish I had renamed it “trade-off factor”, although
this would not have been comprehensible to anyone.)

The success of encoder control depends upon the interplay of three factors:
the implicit qualities of the compression tools — for example, their typical arte-
facts; the dynamics of the control algorithm; and the measures used for distor-
tion measurement in the explicit RDO calculations. In theory, control dynamics
could be completely eliminated, since the temporal effects of control could be
integrated into a measure of distortion. In practice, distortion in video coding
can only be explicitly measured (and therefore directly controlled) picture by
picture, and the control architecture can usually only be feedback-based. So
the distortion metrics used in RDO do not capture all the distortions that are
relevant, by any means.

The difference between excellent encoder control and merely good would
seem to be not the use of RDO for low-level encoder decisions (which is ubiqui-
tous), but how the system works dynamically to compensate for changes in the

material which make the measurements used for control obsolete or inaccurate,
and how these dynamics work perceptually.

4 Encoding a sequence

Encoding a sequence is handled by the SequenceCompressor class (sequence_compress.cpp).
This class maintains the current position in the sequence and codes the next

picture in coded order. Source pictures are placed into two encoder buffers, a

clean one which is used for motion estimation, and a locally decoded one which

holds reconstructed coded pictures, to be used for motion compensation and to

provide a local output if required.

Coding is done by calling a function called CompressNextFrame() every
picture period. The main job the class has to do is re-ordering pictures so that
they are encoded in the correct order, which in the presence of B pictures is not
display order. There are several ways to do this, but CompressNextEFrame()
operates by:

1. Let P be the number of pictures encoded so far

2. Let K be the number of pictures read into the encoder buffer so far (po-
sition in the current video stream/source buffer)

3. Let N = CodedToDisplay(P) be the picture number of the next picture
to be encoded

4. Read a picture with picture number K. Denoise if required (Section 4.3),
and place in the encoder picture buffers. Set K = K + 1.

5. If K > N: picture N must be in the encoder buffer, so encode and output
picture N and set P = P + 1.

6. Clean the picture buffers of: a) reference pictures that will no longer be
used and b) non-reference pictures already encoded

(NB: This process is made a little more complex in practice by supporting
a locally decoded output).

This algorithm will work for any reordering with a fixed maximum depth i.e.
a fixed maximum value of N — P. If the next picture to be encoded hasn’t been
read yet, then a new picture is read until it has been. Only then is the value
P incremented. So the required delay between a picture being read and being
encoded is built up gradually, without being set in advance. For example, if one
has a traditional IBBPBBP ... GOP, the first I picture is encoded, then the
next 3 pictures are read before the P picture is encoded, and from then on the
encoder operates with 3 pictures delay.

4.1 Re-ordering

The encoder command-line parameters determine the CodedToDisplay() func-
tion. The encoder defines Level 1 (L1) pictures and Level 2 (L2) pictures. These
are (now — it was different in the past)actually P pictures and B pictures — in
the sense of forward and bi-directionally predicted pictures. Note that unlike
MPEG-2 L2/B pictures may be used as reference pictures.

Two values are set: num_L1 and L1_sep. L1ep is the number of L2 pictures
that occur between an I or LL1 picture and the next I or L1 picture. For example,
IBBBPBBBP... has an L1 separation of 3, L1_sep = 0 gives P-only coding.
num_L1 is the number of L1 pictures that occur in a GOP i.e. between scheduled
I pictures (some may be turned into I pictures by cut detection.

The total GOP length is given by (num_L1 + 1) x L1_sep.

4.2 Operation of the picture buffers

The picture buffers are instances of the FrameBuffer class.

Each picture buffer is a set of (pointers to) picture data, considered as a set
of picture-sized “slots”. When the buffer is cleaned of pictures that don’t need
to be retained, slots are vacated. These are used when new pictures are added
to the buffer. If there are no slots available then a new slot is added.

4.3 Denoising

If the command-line denoising option is set, then a centre-weighted 3x3 median
filter is applied. This has kernel

1 1 1
1 5 1
1 1 1

i.e. the centre value is repeated 5 times before the median is taken. Denoising
occurs as a picture is read, and so it applies to the copy of the picture in both
the clean (motion estimation) and the coded picture buffers.

5 Encoding a picture

The overall procedure for encoding a picture is as follows (optional steps are in
square braces):

1. Set the picture encoding parameters for picture N based on position in
the GOP

2. if not intra:

(a) Motion estimate (Section 5.2)
(b) Do cut detection

(¢) If still not intra: motion compensate
3. For each component and each subband:

(a) Set RDO lambda to be used (Section 5.4)
(b) Select a quantiser(Section 5.5)

4. Quantise and code component subbands

5.1 Picture encoding parameters

The picture encoding parameters consist of:

1. Picture type (Intra/Inter, Reference/Non Reference)
2. Expiry time (when it may be removed from the encoder buffers)

3. Picture lambda values

5.1.1 Picture types

Picture types are set as follows.

Intra pictures occur every GOP _length pictures, GOP_length = (num_L1+
1) % L1_sep.

The references for L1 /P pictures are the last two L1 or I pictures (in display
order), except for the first L1 picture in a GOP, which only has the previous I
picture as reference. So, for a classic (12,3) GOP, picture 0 is intra; picture 3
has reference 0; picture 6 has references 3 and 0 and picture 9 has references 3
and 6.

L2/B pictures have references the previous picture and the subsequence I/L1
picture. So in a classic (12,3) GOP picture 1 has references 0 and 3, picture 2
has references 1 and 3, picture 4 has references 3 and 6, picture 5 has references
4 and 6, and so on. As a result, all pictures are references except for those L2
pictures immediately before an I or L1 picture.

Cut detection is applied to inter pictures, and can transform them into I
pictures. Their reference status is unchanged.

5.1.2 Expiry time

Removal from the reference picture buffer has to be explicitly signalled to the
decoder. In Dirac this is done by computing an expiry time for each picture
after which it will no longer be used for reference. This is worked out for I, L1
and L2 pictures separately based on the prediction structure.

5.1.3 Picture lambda values

Picture lambda values are used for rate-distortion control of quantisation and
motion estimation: see Section 3 for an overview of the approach. They are ini-
tially derived from the picture QF, which is either set directly on the command-
line and used for all pictures or determined by means of the Rate Control algo-
rithm (Section 6). However, a number of factors are used to modify the lambda
values after motion estimation (Section 5.4).

The initial assignation of values is (from common.cpp):

Ilambda = %610—“05.?”
Ll.lambda = 32x*I_lambda
L2_lambda = 256 * I_lambda

These lambda variables are used for quantiser selection in I, L1 and L2
pictures. From these, motion estimation lambdas are derived:

Ll-melambda = 2.0% v Ll_lambda
L2_me_lambda = Ll_me_lambda

Notes

e These ratios and formulae have been derived by experiment but they are
not optimal for all picture and in particular all sequences, video reso-
lutions, perceptual weightings, or block sizes. The ideal trade-offs may
change with all of these. However, the best values don’t seem to change
very much. In particular, the value of 2.0 used for scaling motion estima-
tion lambdas is a “soft” value: there is little difference in choosing another
value in the same ballpark.

There are two guiding principles:

1. I pictures should be higher quality than L1 pictures and L1 pictures
should be higher quality than L2 pictures

2. Motion data and good motion rendition is more significant at lower
bit rates (low QFs) than at higher ones (high QFs)

The first principle arises because I pictures are used as references for L1
and L2 pictures and L1 pictures are used as references for L2 pictures.
If quality were to go up from I to L1 or L1 to L2, then the encoder
would need to correct the quantisation error introduced in the reference
picture and “pushed forward” by motion compensation. This error is
noise-like and expensive to code (the phase-variation of the wavelet filters
also means that an error in a single coefficient in the reference picture can
spread to several coefficients when that picture is shifted through motion
compensation). As a result the L1 and L2 lambdas are multiplied up.

The aim of the second principle is to stop quality falling off a cliff and QF
goes down/lambdas go up. Two measures are taken. Using the square
root of L1 lambda for motion estimation means that the motion field is
not over-smoothed at low bit rates. Setting the L2 ME lambda equal to
that for L1 means that although the quality is lower, there are no more
poorly corrected areas (in fact there are fewer, as they are B pictures):
L2 pictures have less opportunity to correct motion estimation errors in
residual coding.

e It’s worth pointing out, in the light of the previous comment, that in the
current prediction structure L2 pictures are also predicted from other L2
pictures as well as L1 pictures. One might expect that it would be optimal
to gradually reduce quality through a run of B pictures to allow for this.
However, the current control structure doesn’t allow for this, and perhaps
a “sawtooth” quality profile would be subjectively objectionable in any
case.

e Brunel have argued that for HD material, there is too much disparity
between I, L1, and L2 pictures, and that smaller factors than 32 and 256
should be used. I have found this is so sometimes, but in general it seems
about right.

5.2 Motion estimation

Motion estimation in Dirac uses the general form described in Equation 2, with
an instantaneous measure of motion vector bit rate. However, a number of
methods are used to prevent over-smoothing of the motion field and reduce
visible artefacts:

e)\ g is set to zero for pixel-accurate matching

e)\ g is proportional to the square root of the quantisation lambda (Section
5.1.3

The measure of motion data bit rate takes motion transitions into account

After pixel-accurate motions, the motion field is analysed so that difficult
areas can be treated differently

e Mode decision is biased away from intra blocks
The overall algorithm is:

1. For each reference find pixel-accurate motion fields MV'1, MV2, without
RDO

2. Analyse the pixel accurate motion field and define a value Ayg(B) for
each block B

3. Refine MV1 and MV2 to sub-pixel accuracy using RDO
4. Perform RDO mode decision

In the matching stages, motion vectors are added by adding neighbourhoods
of guide vectors to a common list, ignoring duplicates. Two neighbourhoods a
defined, a square and a diamond shape area:

S(v,d) = {w:|wy—v,| <d|w, —vy| <d}
D(v,d) = {w:|wy —v|+|wy, —v,| <d}

Some other notation. The median of three vectors mathhbfa, mathhbfb, mathhbfc
is given by

Median(mathhbfa, mathhbfb, mathhbfc) = (Median(mathhbfa,, mathhbfb,, mathhbfc,), Median(mathhb fa

The norm of a vector ||v|| is equal to |va| + |vy].

5.2.1 Pixel-accurate estimation

This is the simplest stage. Hiercharical motion estimation is used in order to
capture large motions. At each level, matching is over blocks of size zblen X
yblen, so the number of matches is reduced by a factor 4 at each stage, and
each block occupies 4 times the area of the block at the next highest level. The
depth depth of the hierarchy is such that a whole superblock may be contained
within the current picture, so it varies with the size of the images.

The algorithm is:

1. For level [in depth, depth —1,...,0:

(a) Set d = min(l + 1,5)
(b) For each block (i, 7):
i. Set candidate list C' = S(0, d)
ii. If I < depth: let the lower-level guide be w = v;41(¢/2,5/2); add
S(w,d) to C
iii. Let the spatial predictor s be the median of the already-determined
vectors vi(i — 1,7), vi(i,j — 1), and vi(: — 1,5 — 1). Add S(s,d)
to C
iv. Set v;(i,7) = argmingec SAD(x)

5.2.2 Motion field analysis

The pixel accurate motion field determined in the previous stage is now analysed
to see where jumps in the field occur. Blocks likely to contain jumps will have
A E set to a smaller value:

1. Set Ay equal to L1_M E_lambda or L2_M E_lambda as appropriate (these
values are currently equal in the software)

2. For each motion field MV'1 and MV?2 and each block compute the differ-
ence between the motion vector and its spatial predictor:

di(i,j) = |MV1(i,j) — Median(MV1(i —1,5), MV1(i,j — 1), MV1(i — 1,5 — 1))||
d2(i,j) = |MV2(i,j) — Median(MV2(i —1,7), MV2(i,j — 1), MV2(i — 1,5 — 1))||

3. Define m1 and o1 as the mean and standard deviation of d1 and m2 and
02 the mean and standard deviation of d2.

4. If d1(i,7) > m1+ 30l mark (i, j) as a reference 1 transition. If d2(i, j) >
m2+ 3 x 02 mark (i,) as a reference 2 transition.

5. If (4,7) is a reference 1 and a reference 2 transition, Ay (4, j) = 0; else if
it is either a reference 1 or a reference 2 transition, A\yg(i,j) = AmE/4

5.2.3 Sub-pixel refinement

The pixel-accurate motion vector fields for each reference are refined individu-
ally.

Sub-pixel refinement uses the pixel accurate motion vector as the initial
guide. 1/2, 1/4 and 1/8 pixel vectors are searched in turn, with the result of
1/2-pel matching being used as the guide for 1/4-pel matching and that for 1/4
pel matching being used as the guide for 1/8-pel matching. Hence there are a
maximum of 3 stages.

Within each stage there are two sub-stages. The first searches horizontal
and vertical offsets, marked * below:

*
¥ X %
*

When the best one is found, the two nearest unsearched positions are searched,
e.g. (new positions marked +):

+ *
* X ok
—+ *

The matching function used is:
M(v,i,j) = SAD(v) + Ayg(i,j)MCost(v, i, j) (3)
where
MCost(v,i,j) = min(|[v], [[v = Median(v (i —1,3),v(i,j = 1),v(i = 1,5 = 1))[|)

So the cost function does not simply use the size of the difference from the
spatial predictor but also the size of the vector itself. This is intended to provide
better results at foreground/background transitions, where one vector will be
close to 0 and those of adjacent blocks will be large.

5.2.4 Mode decision

Mode decision is the final stage of motion estimation. At this point there are
block-level motion vectors for each reference, together with estimated costs aris-
ing from the matching crition 3. To choose a prediction mode we need costs
for intra prediction and for bi-directional prediction also. To choose a splitting
mode we need costs for sub-superblock and superblock splittings for all four
prediction modes.

The approach is to loop over splitting level, starting at level 2 (block level
splitting) and working upwards. Within each splitting level the best prediction
modes are selected.

Level 2 mode decision We have Refl and Ref2 costs from sub-pixel match-
ing. So:

1. For each block:

(a) If Ref2 cost j Refl cost: set mode equal to Refl, else set it to Ref2.

(b) Use Refl and Ref2 motion vectors to determine a bidirectional SAD
cost from the two references. Add the Refl and Ref2 motion costs
from equation 3 to get a Refland2 motion cost.

(¢) If the Refland2 cost | best cost so far, set the mode equal to Refl
and 2

(d) Compute an Intra cost as the SAD value of the DC difference
(e) If the Intra cost is j 90% of best cost so far, set mode equal to Intra

2. For each superblock, let the level 2 cost be the sum of the best costs for
each block

Level 1 mode decision Level 1 mode decision requires costs for all four
modes and each constituent sub-superblock. Refl and Ref2 costs are determined
by block-matching using the cost function 3. The ME lambda used for the match
is the maximum of the ME lambda for the constituent blocks. For each sub-
superblock, 4 candidates are tested, namely the motion vectors determined for

10

the constituent blocks. Thereafter, the process is the same as for Level 2 mode
decision.

The level 1 costs must be scaled to take account of the fact that the total
overlap between sub-superblocks is less than that between blocks. Once this is
done, level 1 costs can be compared to level 2 costs for each superblock, and if
lower the splitting mode set to 1.

Level 0 mode decision Level 0 mode decision is only applied when the
splitting mode has been set to 1 in the previous stage. It operates very similarly
to Level 1 mode decision.

5.3 Cut detection

L1 and L2 pictures may be replaced with intra pictures if motion estimation is
deemed to have essentially failed. This is measured by the proportion of intra
blocks, ignoring superblock splitting (i.e. a superblock counts as 16 individual
blocks regardless of the splitting mode). If this proportion is greater than a
threshold of 1/3 then an intra picture is inserted, but in any case the picture
lambda is revised:

1. Let R be the proportion of intra blocks
2. If R > 0.3333:

(a) set the picture type to be intra (reference/non reference status un-
changed)

(b) set I_lambda = I_lambda * 8

The intra block ration is also used to modify the component lambda even if
an I frame is not inserted (Section 5.4.1).
Notes

e If there is an inserted I picture, it has lower quality than a scheduled
intra picture. The factor 8 experimentally seems to give about the same
quality as an L1 picture. One might expect the correct factor to be 32,
as in the original assignment to L1 pictures (Section 5.1.3) but I and L1
pictures use different perceptual weightings (Section 5.4.3), which affects
how quantisation noise is weighted in the calculations.

5.4 Setting subband RDO lambdas
By the time quantiser selection occurs, the lambda actually used depends upon:

e The overall QF

e The picture type (scheduled I, inserted I, L1 or L2)

e The proportion of intra blocks, if L.1 or L2

e The video component and chroma subsampling ratios

e Filter gains and the perceptual weighting matrix

The lambda value used for determining the quantiser for each subband is
therefore set as follows:

11

Set an overall component lambda:

I_lambda if Intra
A= L1.lambda if L1
L2_lambda if L2

. If inserted intra:

A=Ax%x8

If L1 or L2, adjust according to the proportion of intra blocks (Section
5.4.1)

If component is U
Ak =1.0

If component is V'
Ax=1.0

(There is provision in the software for non-trivial weighting if required.)
For each subband n, define lambda(n) by
A(n)x = gain(n) x weight(n)

where gain(n) and weight(n) are as defined in Sections 5.4.2 and 5.4.3.

Notes

If there is an inserted I picture, it has lower quality than a scheduled
intra picture. The factor 8 experimentally seems to give about the same
quality as an L1 picture. One might expect the correct factor to be 32,
as in the original assignment to L1 pictures (Section 5.1.3) but I and L1
pictures use different perceptual weightings (Section 5.4.3), which affects
how quantisation noise is weighted in the calculations.

5.4.1 Adjusting for the proportion of intra blocks

L1 and L2 pictures may have their lambdas modified depending on how effective
motion estimation has proved to be. This is measured by the proportion of intra
blocks, ignoring superblock splitting (i.e. a superblock counts as 16 individual
blocks regardless of the splitting mode). If this proportion is greater than a
threshold of 1/3 then an intra picture is inserted, but in any case the picture
lambda is revised:

1.

If not intra:

(a) Let R be the proportion of intra blocks
(b) lambda = 104 x log(I_lambda) + (1 — r) * log(lambda))

Notes

If a picture has a larger proportion of intra blocks, it uses a lower lambda —
closer to the intra picture lambda — than it would otherwise. The formula
for adjusting to the ratio is a weighted geometric mean, since quality has
a roughly log-like relationship to the lambda values. It’s equivalent to
taking a weighted arithmetic mean of the associated QF values.

12

5.4.2 Filter gains

Each subband is associated with a filter gain g(n) representing the noise power
gain that would arise from quantisation in that subband. In the event of true,
properly scaled real-valued orthogonal wavelets this value would be 1, but such
filters would have a DC gain of /2, which does not translate well into the integer
implementations used in Dirac.

In the software the filter gains are used to weight the measured quantisation
noise in quantiser selection, but this is equivalent to scaling the quantisation
lambda A(n) for each subband.

gain(n) is determined as follows: define values a and 8 as the RMS power
gain of the low-pass and high-pass filters respectively. These factors for the
different filters can be found in wavelet_utils.h,cpp. RMS quantisation noise in
each of the four subbands LL, HL, LH and HH is therefore weighted by the
factors shown in Figure 1.

LL - o HL - of

LH - of HH - 32

Figure 1: Subband weights for a 1-level decomposition

In a two-level decomposition, the LL band is further decomposed, yielding
the situation shown in Figure 2.

This process continues with each decomposition, leading to an RMS weight
value w(n) for each subband. The appropriate gain factor gain(n) = w(n)?.

Notes

e The gain factors

13

LL - o*| HL - o?p

HL — af

LH - o?f HH - o?4?

LH - af HH - 32

Figure 2: Subband weights for a 2-level decomposition

5.4.3 Perceptual weighting

Perceptual weights depend upon the picture dimensions, aspect ratiom the as-
sumed viewing distance and (if chroma) the chroma subsampling ratios: these,
together, give rise to a value of “cycles per degree” (CPD). Given a value of
CPD, one may determine normalised spatial frequency ranges for each subband
and feed them into a weighting function, normally a model of the human Con-

trast Sensitivity Function (CSF).
The calculation is as follows:

1. Frequency normalisation. Set

fo = CPDx(zs+xl/2)/xl
fy = CPDx(ys+yl/2)/yl

14

where zl, yl are the horizontal and vertical bandwidths and xs and ys are
the horizontal and vertical lower cutpoints of the band.

2. If the component is chroma

fo = foxll
fy = fyxll

(additional softening for chroma data)

3. If the component is chroma and 422 or 420 sampled

If the component is chroma and 420 sampled,
fy=1y/2

4. If the picture is inter (L1 or L2)

fy = Jfy/8

5. Define
wt(n) = 0.255 % (1.0 4 0.2561 (f7 + f7))" ™

6. Normalise the weights to give constant white noise power, whatever the
weight:
wt(n)?
Yo wt(k)? « subband_frac(k)

weight(n) =

where subband_frac(n) is the fraction of the spatial frequency range occu-
pied by the subband (i.e. a quarter for top-level subbands, 1/16 for lower
levels and so on).

5.5 Quantiser selection

The quantisation selection algorithm uses the A(n) value determined for the
subband (Section 5.4). It is based on RDO optimisation using a 4th-power
measure of quantisation error and direct symbol counts of quantised values to
compute entropy. In the current software (quant_chooser.h,cpp) it is possible to
compute different quantisers for each codeblock, but this doesn’t work well and
is not discussed further.

Although a single quantiser is determined for the whole subband, in the
software statistics are gathered by codeblock. This allows multiple subband
quantisers to be supported and also allows skipped codeblocks to be identified
without another pass over the data, which (perhaps) improves efficiency. This
feature of the software is ignored in what follows.

The overall quantiser selection algorithm does a hierarchical search over bit-
accurate, half-bit and quarter-bit quantisers:

1. Set gstep = 4, gqmin = 0, gmax = oo

15

2. For gindex = gqmin to gmax step gstep:
e Compute Error(gindex)
e Compute Entropy(gindex)
3. Set gbest = minginder=0,48...(Error(gindex) + A(n) Entropy(gindex))
4. Set gmin = gbest — 2, gmax = gbest + 2, gstep = 2 and repeat step 2.
5. Set gbest = mingindez=gmin,...,gmaz (Error(gindex)+A(n) Entropy(gindex))
6. Set gmin = gbest — 1, gmax = gbest + 1, gstep = 1 and repeat step 2.

7. Set gbest = mingindez=gmin,...,gmaz (Error(gindex)+A(n) Entropy(gindex)).
Stop.

Error(gindex) and Entropy(gindex) are defined as follows. If z — Q(gindex, x)
denotes quantisation by the quantiser with index gindez, and y — IQ(gindezx, y)
denotes inverse quantisation, then quantisation and reconstruction of a value x
is given by:

R(gindex,) = I1Q(gindex, Q(gindex, x))

Error(gindez) is defined by:

Error(gindex) = <% Z(x — R(gindex, x))4>

n

where N is the number of values sampled from the subband (in the Dirac soft-
ware vertical and horizontal subsampling ratios can be defined to reduce com-
putation).

Entropy is calculated by assuming unary binarisation (i.e. magnitude value
y becomes y zeroes followed by a 1). So to compute Entropy(gindex) do:

1. Set

e count0) =0
e countl =0
e countPOS =0
e countNEG =0

2. For each z in (sampled) subband:

e Set y = Q(gindex,), countl = countl + 1, count0 = count0 + |y|
e If y > 0, set countPOS = countPOS + 1
o If y <0, set countNEG = count NEG + 1

3. Set N = countl (the number of coefficients counted)
4. Set magnitude probabilities: Py = count0/(count0+ countl), P, = 1— Py

5. Set sign probabilities: Ppos = countPOS/(countPOS + countN EG),
Pneg =1— Ppos

16

6. Compute magnitude entropy per bit:
emag = —Po *1ogy (Py) — P1 *logy(Pr)
and sign entropy per bit
esign = —Ppos *10ogy(Ppos) — countNEG *logy(PNEG)

7. Scale to give entropies per coefficient:

count0 + countl countPOS + count NEG
N e N

Entropy(gindex) = emag*

8. Correct the entropy estimate by a correction factor based on subband,
picture type and component:

Entropy(gindex) = Entropy(gindex) * cfactor(pic_type, n, comp_sort)

(Say sthg about correction factors) (Say sthg about DC bands)
Notes

e Obviously the calculation of Entropy(gindex) and Error(gindex) can be
done simultaneously, as it is in Dirac

e The bit-accurate quantisation measurements can all be done in a single
pass over the data, since in this case quantisation is just a repeated division
by 2.

e There are many shortcuts which can be taken: the statistics of the subband
may be modelled by a parameterised distribution for which the entropy
and error values can be looked up from a table; an initial bit-accurate
search can be done, and then the best sub-bit quantiser found by curve-
fitting; a quantisation matrix can be devised which gives only a single
degree of freedom, and so on.

6 Rate control and constant bit rate operation

17

